Mechatronics, Electrical Power, and Vehicular Technology
Vol 15, No 1 (2024)

Design of image classification system for fabric inspection process using Raspberry Pi

Nugroho, Emmanuel Agung (Unknown)
Setiawan, Joga Dharma (Unknown)
Munadi, Munadi (Unknown)
Diki, Diki (Unknown)



Article Info

Publish Date
31 Jul 2024

Abstract

This research is designed as a prototype of defect inspection system on fabric production using machine learning-based image processing technology using the open source Google teachable machine application integrated with Raspberry Pi-3B. The prototype of fabric defect inspection system is built by utilizing two rollers that function as a fabric roll house before and after the inspection process. On both rollers, a fabric is stretched to be inspected, so that from a roll of fabric with a certain length, it can be seen how many defects occur on the fabric. The inspection system is carried out using a web camera with a certain level of lighting connected to a raspberry pi as a control device. Raspberry Pi functions as an image processing device and fabric rolling motor controller. In addition to the category of fabric in good condition, this system classifies into two categories of defects, namely slap defects and sparse defects. The test results show that this system has an average frame per second (FPS) of 4.85, an average inference time of 181.1 ms, with an accuracy of image classification results of 98.4 %.

Copyrights © 2024






Journal Info

Abbrev

mev

Publisher

Subject

Electrical & Electronics Engineering

Description

Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular ...