International Journal of Electrical and Computer Engineering
Vol 14, No 4: August 2024

Email subjects generation with large language models: GPT-3.5, PaLM 2, and BERT

Loukili, Soumaya (Unknown)
Fennan, Abdelhadi (Unknown)
Elaachak, Lotfi (Unknown)



Article Info

Publish Date
01 Aug 2024

Abstract

In order to enhance marketing efforts and improve the performance of marketing campaigns, the effectiveness of language generation models needs to be evaluated. This study examines the performance of large language models (LLMs), namely GPT-3.5, PaLM 2, and bidirectional encoder representations from transformers (BERT), in generating email subjects for advertising campaigns. By comparing their results, the authors evaluate the efficacy of these models in enhancing marketing efforts. The objective is to explore how LLMs contribute to creating compelling email subject lines and improving opening rates and campaign performance, which gives us an insight into the impact of these models in digital marketing. In this paper, the authors first go over the different types of language models and the differences between them, before giving an overview of the most popular ones that will be used in the study, such as GPT-3.5, PaLM 2, and BERT. This study assesses the relevance, engagement, and uniqueness of GPT-3.5, PaLM 2, and BERT by training and fine-tuning them on marketing texts. The findings provide insights into the major positive impact of artificial intelligence (AI) on digital marketing, enabling informed decision-making for AI-driven email marketing strategies.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...