International Journal of Electrical and Computer Engineering
Vol 14, No 3: June 2024

Machine learning-based lightweight block ciphers for resource-constrained internet of things networks: a review

Naik, Mahendra Shridhar (Unknown)
Mallam, Madhavi (Unknown)
Soppinhalli Nataraju, Chaitra (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

The increasing number of internet of things (IoT) devices, wearable technologies, and embedded systems has experienced a significant increase in recent years. This surge has brought attention to the necessity for cryptographic algorithms that are lightweight and capable of providing security in resource-constrained environments. The primary objective of lightweight block ciphers is to provide encryption capabilities with minimal computational overhead and decreased power consumption. As a result, they are particularly well-suited for use on devices that have limited resources. At the same time, machine learning methodologies have evolved into powerful mechanisms for the purposes of prediction, categorization, and system optimization. This study introduces a challenges and issues involved in integrating machine learning techniques with the development of lightweight block ciphers.

Copyrights © 2024






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...