IAES International Journal of Robotics and Automation (IJRA)
Vol 13, No 3: September 2024

Switching regulator based on an adaptive DC-DC buck converter for a lithium-ion battery charging interface

Rahali, Ahmed (Unknown)
El Khadiri, Karim (Unknown)
Qjidaa, Hassan (Unknown)
Tahiri, Ahmed (Unknown)



Article Info

Publish Date
01 Sep 2024

Abstract

A switching regulator based on an adaptive DC-DC buck converter for a Li-ion battery charging interface is introduced in this paper with the aim of improving the efficiency of charging the Li-ion battery during the whole charging process. By using the battery voltage as feedback, an adaptive reference is generated. This reference is employed by the converter, which is in continuous conduction mode (CCM), to produce a wide adaptive output voltage that closely tracks the battery voltage, intended to serve as the power source for the multimode charging interface. The converter was implemented in a 180 nm complementary metal oxide semiconductor (CMOS) process and simulated using the Cadence Virtuoso tool. With an input voltage of 5 V and a switching frequency selected at 500 kHz, the simulation results show that the converter produces different charging currents for each battery charging mode, and an adaptive output voltage ranging from 2.8 V to 4.38 V, with the current ripple of 38 mA in CC mode and voltage ripple factor less than 1% in constant voltage (CV) mode. The average converter efficiency is 83.5%.

Copyrights © 2024






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...