IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 2: June 2024

Kernel density estimation of Tsalli’s entropy with applications in adaptive system training

Chawla, Leena (Unknown)
Kumar, Vijay (Unknown)
Saxena, Arti (Unknown)



Article Info

Publish Date
01 Jun 2024

Abstract

Information theoretic learning plays a very important role in adaption learning systems. Many non-parametric entropy estimators have been proposed by the researchers. This work explores kernel density estimation based on Tsallis entropy. Firstly, it has been proved that for linearly independent samples and for equal samples, Tsallis-estimator is consistent for the PDF and minimum respectively. Also, it is investigated that Tsallisestimator is smooth for differentiable, symmetric, and unimodal kernel function. Further, important properties of Tsallis-estimator such as scaling and invariance for both single and joint entropy estimation have been proved. The objective of the work is to understand the mathematics behind the underlying concept.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...