JATIKOM: Jurnal Aplikasi dan Teori Ilmu Komputer
Vol 4, No 2 (2021)

Mesin Rekomendasi Film Menggunakan Metode Deep Autoencoder

Maulana, Muhamad Adie (Unknown)
Wihardi, Yaya (Unknown)
Piantari, Erna (Unknown)



Article Info

Publish Date
04 Mar 2024

Abstract

Layanan penyedia jasa berbasis internet seperti Netflix, Iflix, Amazon Prime, dan lainnya telah mengalami peningkatan total waktu tonton secara drastis dalam kurun waktu sepuluh tahun kebelakang. Pada tahun 2017, pengguna layanan Netflix secara kolektif telah menonton konten Netflix selama 140 juta jam per hari dan mendapatkan pendapatan sebesar 11 milyar dollar amerika [1]. Hampir 80% waktu yang ditonton di Netflix berasal dari mesin rekomendasi yang dibangun oleh Netflix. Hampir semua mesin rekomendasi menggunakan metode collaborative filtering, namun metode Restricted Boltz-mann machines untuk membangun collaborative filtering [2], menunjukkan hasil prediksi yang konsisten meskipun data pelatihan meningkat, sehingga masalah skabilitas dapat teratasi. Konsep yang diadopsi dari model deep learning adalah kemampuan metode ini untuk mengekstraksi fitur robust secara unsupervised melalui rekonstruksi input autoencoder.  Berdasarkan hasil pengujian dengan data uji 6040 user, 3883 item (film), dan 1.000.209 rating  menghasilkan nilai loss yang rendah yaitu 0.7322 dan nilai RMSE 0,7227 dengan menggunakan metode autoencoder yang telah dimodifikasi.

Copyrights © 2021






Journal Info

Abbrev

JATIKOM

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Engineering

Description

JATIKOM adalah jurnal nasional yang ditujukan sebagai media publikasi hasil-hasil penelitian tentang aplikasi dan teori di rumpun bidang ilmu komputer seperti kecerdasan buatan, rekayasa perangkat lunak, basis data, sistem informasi, jaringan komputer, teknologi informasi, simulasi dan pemodelan, ...