Bulletin of Electrical Engineering and Informatics
Vol 13, No 2: April 2024

Performance evaluation of feature selections on some ML approaches for diagnosing the narcissistic personality disorder

Sulistiani, Heni (Unknown)
Syarif, Admi (Unknown)
Muludi, Kurnia (Unknown)
Warsito, Warsito (Unknown)



Article Info

Publish Date
01 Apr 2024

Abstract

Narcissistic personality disorder (NPD) is a personality disorder that affects various aspects of life, including relationships, employment, school, and finances. Persons with NPD usually feel unhappy and disappointed when no one helps them and is not praised for their achievements. Diagnosing narcissism is generally done using a screening test that consumes time and costs a lot. This research aims to evaluate the performance of several feature selection (FS) approaches on machine learning (ML) techniques (support vector machine (SVM), random forest classifier (RFC), and Naive Bayes). Three scenarios of FS (all features, the information gain technique and the gain ratio (GR) feature technique) are used for each ML method. Several experiments using the benchmark narcissistic disorder dataset have been done. It adopts the k-fold cross-validation (10-fold cross-validation) strategy. We evaluate the method’s performance by measuring its accuracy, error rate, and processing time. It is shown that the RFC GR strategy gives the best performance with an accuracy of 100%.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...