Bulletin of Electrical Engineering and Informatics
Vol 13, No 1: February 2024

Performance analysis of convolutional neural network architectures over wireless capsule endoscopy dataset

Kaur, Parminder (Unknown)
Kumar, Rakesh (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

Wireless capsule endoscopy is one of the diagnostic methods used to record the video of the gastrointestinal tract. The endoscopy capsule stays in the digestive system for at least eight hours. It is difficult for gastroenterologists to examine such a lengthy video and identify the ailment. Convolutional neural networks (CNN) are a powerful solution to several computer vision problems. CNN can speed up the reviewing time of the recorded video by classifying video frames into various categories. The primary emphasis of this research paper is to examine and evaluate the performance of three different CNN architectures-VGG, inception, and MobileNet-in classifying the disease. Experimental results demonstrate that MobileNetV2’s accuracy is 91%, whereas InceptionV3 and VGG16 have an accuracy of 94% which is better than the accuracy of MobileNetV3. However, MobileNeV2 performed relatively better than the other CNN models in terms of computational time and cost. The model’s F-score, precision, and recall values are computed and compared also.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...