Bulletin of Electrical Engineering and Informatics
Vol 13, No 1: February 2024

TBNet: learning from scratch and limited training data, a CNN based tuberculosis bacilli detection

Agoes, Ali Suryaperdana (Unknown)
Winarno, Winarno (Unknown)



Article Info

Publish Date
01 Feb 2024

Abstract

Tuberculosis (TB) is an infectious disease caused by the micro-bacteria. Several studies that have been conducted previously aimed to reduce the burden of observing tuberculosis bacilli using the digital image processing method. In this study, we proposed a newly developed convolutional neural network (CNN) based deep learning model to detect tuberculosis bacilli in sputum smear images. Recent advances in deep learning apply large scale image dataset to achieve convergent weight model. However, medical image dataset commonly available in relatively small quantity. In contrary with common deep learning approach, our model is capable to learn from our small dataset which consist of highly diverse hue and contrast of sputum smear images. Furthermore, its performance is proven to be reliable to detect sputum smear image content, which are TB bacillus and debris.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...