Bulletin of Electrical Engineering and Informatics
Vol 13, No 4: August 2024

Optimization of a CH3NH3SnI3 based lead-free organic perovskite solar cell using SCAPS-1D simulator

Rana, Md. Sohel (Unknown)
Abdur Razzak, Md. (Unknown)



Article Info

Publish Date
01 Aug 2024

Abstract

In this study, a CH3NH3SnI3-based perovskite PV cell with the structure (FTO/TiO2/CH3NH3SnI3/Cu2O) was made and optimized by changing the layer thickness, defect density, and doping profile using the solar cell capacitance simulator (SCAPS) 1D simulator. To better understand how the device interface affects carrier dynamics, a synergic optimization of the device is done by altering the electron-transport layer (ETL) and hole-transport layer (HTL) materials. The light glows through the window layer of Sn2O: F, which serves as the transparent conducting oxide layer in our suggested cell construction and then travels over TiO2 as an n-type ETL. Due to its unique features, the p-type perovskite (CH3NH3SnI3) is chosen as the primary absorber layer. Lastly, Cu2O is added as an HTL before the back contact because it has a higher hole conductivity and the proper offsets for spreading the valance and conduction bands. Additionally, Cu2O-based devices outperform frequently utilized spiro-OMeTAD-based devices in terms of efficiency. According to the findings of these simulations, the optimized structure has a power conversion efficiency (PCE) of 41%, an open-circuit voltage of 1.32 V, a short-circuit current density of 34.31 mA/cm2 and a fill factor (FF) of 90.5%. Additionally, the optimized structure has a short-circuit current density of 34.31 mA/cm2.

Copyrights © 2024






Journal Info

Abbrev

EEI

Publisher

Subject

Electrical & Electronics Engineering

Description

Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the ...