CESS (Journal of Computer Engineering, System and Science)
Vol 9, No 2 (2024): July 2024

Analisis Perbandingan Multinominal Naïve Bayes dan Adaboost dalam Mengklasifikasikan Sentimen Terkait Pinjaman Online

Pangestu, Yoga (Unknown)
Basri, Muhammad (Unknown)



Article Info

Publish Date
11 Jul 2024

Abstract

Penelitian ini bertujuan untuk menganalisis dan membandingkan kinerja algoritma Multinomial Naive Bayes (MNB) dan AdaBoost dalam mengklasifikasikan sentimen masyarakat terkait pinjaman online. Data yang digunakan dalam penelitian ini adalah komentar pengguna di media sosial twitter terkait pinjaman online. Metode yang digunakan untuk mengolah data adalah SEMMA (Sample, explore, modify, model, acces), tahapan tersebut menncakup tahap preprocessing data pemodelan dan evaluasi. Sentiment diklasifikasikan kedalam kelas positif, negatif dan netral dengan menggunakan kamus lexicon base bahasa indonesia. Model yang dibangun menggunakan Algoritma MNB dan AdaBoost untuk dibandingkan performanya. Hasil evaluasi model menunjukan menunjukkan bahwa algoritma AdaBoost memiliki kinerja yang lebih baik dibandingkan dengan algoritma MNB dalam mengklasifikasikan sentimen masyarakat terkait pinjaman online. Hal ini dibuktikan dengan nilai akurasi dari algoritma AdaBoost sebesar 76%, sedankan akurasi dari algoritma MNB sebesar 71%.

Copyrights © 2024






Journal Info

Abbrev

cess

Publisher

Subject

Computer Science & IT

Description

CESS (Journal of Computer Engineering, System and Science) contains articles on research results and conceptual studies in the fields of informatics engineering, computer science and information systems. The main topics published include: 1. Information security 2. Computer security 3. Networking & ...