Jurnal Responsif : Riset Sains dan Informatika
Vol 6 No 2 (2024): Jurnal Responsif : Riset Sains dan Informatika

PENDEKATAN ALGORITMA NEURAL NETWORK DAN GENETIC ALGORITHM UNTUK PREDIKSI PENYAKIT GINJAL KRONIS

Siswaja, Hendy D (Unknown)
Ramdhani, Yudi (Unknown)



Article Info

Publish Date
14 Aug 2024

Abstract

Penyakit ginjal kronis (PGK) merupakan masalah kesehatan masyarakat global yang mempengaruhi sekitar 10% dari populasi dunia. Persentase prevalensi PGK di China adalah 10,8%, dan rentang prevalensinya adalah 10%-15% di Amerika Serikat. Seiring dengan perkembangan Artificial Intelligence (AI) dimana Machine Learning (ML) merupakan subbagian dari AI, penelitian ini mencoba memanfaatkan algoritma Neural Network, optimasi data berbasis Genetic Algorithm, dan k-fold Cross Validation dengan nilai k berkelipatan 10, yaitu 10, 20, 30, 40, dan 50 untuk memprediksi apakah seorang pasien mengidap PGK atau tidak dari dataset yang berisi hasil uji klinis pasien tersebut. Hasil penelitian ini mengungkapkan bahwa algoritma Neural Network dengan optimasi data berbasis GA mampu memperoleh tingkat akurasi sampai dengan 98,75% dan nilai AUC sebesar 0,999 sehingga dapat disimpulkan bahwa algoritma Neural Network dengan optimasi berbasis GA ini dapat dikembangkan lebih lanjut menjadi sebuah aplikasi ataupun bagian dari sistem kesehatan sehingga tingkat diagnosa pasien yang mengidap PGK dapat lebih cepat dilakukan dengan tingkat akurasi yang tinggi dan dapat meningkatkan peluang kesembuhan bagi pasien tersebut.

Copyrights © 2024






Journal Info

Abbrev

jti

Publisher

Subject

Computer Science & IT

Description

Jurnal Responsif: Riset Sains dan Informatika merupakan Jurnal yang bertujuan untuk mewadahi semua informasi hasil penelitian, telaah pustaka, makalah teknis, dan kajian buku, dari berbagai cabang Ilmu Komputer, Teknik Informatika dan Sistem Informasi. Diharapkan dengan adanya wadah penerbitan ini ...