Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
Vol. 7 No. 2 (2023)

Random State Initialized Logistic Regression for Improved Heart Attack Prediction

Wibowo, Kevyn Alifian Hernanda (Unknown)
Putri, Salma Aprilia Huda (Unknown)
Jumanto, Jumanto (Unknown)
Muslim, Much Aziz (Unknown)



Article Info

Publish Date
29 Dec 2023

Abstract

One of the primary causes of death in Indonesia is heart attacks. Therefore, an effective method of pre-diction is required to determine whether a patient is experiencing a heart attack. One efficient approach is to use machine learning models. However, it is still rare to find machine learning models that have good performance in predicting heart attacks. This study aims to develop a machine learning model on Logistic Regression algorithm in predicting heart attack. Logistic Regression is one of the machine learning meth-ods that can be used to study the relationship between a binary response variable [0,1] and a set of pre-dictor variables, and can be used directly to calculate probabilities. In this study, a random state is ini-tialized in the Logistic Regression model in order to stabilize the training of the machine learning model and increase the precision of the proposed method. The results of this study show that the proposed model can be a method that has good performance in predicting heart attack disease.

Copyrights © 2023






Journal Info

Abbrev

eltikom

Publisher

Subject

Aerospace Engineering Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

We are the Editor of Jurnal ELTIKOM, invites Mr. / Ms Lecturer, researcher and practitioner to be able to publish your paper on topics covering Electrical Engineering, Electronics Engineering, Telecommunications Engineering, Computer Engineering, Information ...