Journal of Electronics, Electromedical Engineering, and Medical Informatics
Vol 6 No 3 (2024): July

A Comparative Analysis of Polynomial-fit-SMOTE Variations with Tree-Based Classifiers on Software Defect Prediction

Nur Hidayatullah, Wildan (Unknown)
Herteno, Rudy (Unknown)
Reza Faisal, Mohammad (Unknown)
Adi Nugroho, Radityo (Unknown)
Wahyu Saputro, Setyo (Unknown)
Akhtar, Zarif Bin (Unknown)



Article Info

Publish Date
12 Jul 2024

Abstract

Software defects present a significant challenge to the reliability of software systems, often resulting in substantial economic losses. This study examines the efficacy of polynomial-fit SMOTE (pf-SMOTE) variants in combination with tree-based classifiers for software defect prediction, utilising the NASA Metrics Data Program (MDP) dataset. The research methodology involves partitioning the dataset into training and test subsets, applying pf-SMOTE oversampling, and evaluating classification performance using Decision Trees, Random Forests, and Extra Trees. Findings indicate that the combination of pf-SMOTE-star oversampling with Extra Tree classification achieves the highest average accuracy (90.91%) and AUC (95.67%) across 12 NASA MDP datasets. This demonstrates the potential of pf-SMOTE variants to enhance classification effectiveness. However, it is important to note that caution is warranted regarding potential biases introduced by synthetic data. These findings represent a significant advancement over previous research endeavors, underscoring the critical role of meticulous algorithm selection and dataset characteristics in optimizing classification outcomes. Noteworthy implications include advancements in software reliability and decision support for software project management. Future research may delve into synergies between pf-SMOTE variants and alternative classification methods, as well as explore the integration of hyperparameter tuning to further refine classification performance.

Copyrights © 2024






Journal Info

Abbrev

jeeemi

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Electronics, Electromedical Engineering, and Medical Informatics (JEEEMI) is a peer-reviewed open-access journal. The journal invites scientists and engineers throughout the world to exchange and disseminate theoretical and practice-oriented topics which covers three (3) majors areas ...