JISKa (Jurnal Informatika Sunan Kalijaga)
Vol. 9 No. 2 (2024): Mei 2024

Analisis dan Optimalisasi Performa Algoritma Gaussian Naive Bayes pada Prediksi Metabolic Syndrome Menggunakan SMOTE

Fauziyah, Nadiyah Jihan (Unknown)
Rahmania, Fadilla (Unknown)
Daniyal, Muhammad (Unknown)
Sari, Nur Fitriyah Ayu Tunjung (Unknown)



Article Info

Publish Date
25 May 2024

Abstract

Metabolic syndrome is a complex global health problem, with symptoms such as abdominal obesity, insulin resistance, high blood pressure, high blood sugar, and abnormal blood lipids. With this global challenge, several studies have attempted to predict these diseases using machine learning methods. However, often, predictions about a disease result in data imbalance where minority classes are underrepresented. To balance the class proportions, the Synthetic Minority Over-sampling Technique (SMOTE) method replicates the minority class samples. In this research, the technique applied to predict is the Gaussian Naive Bayes (GNB) algorithm. The results show an increase in prediction accuracy by 0.2 from 0.81 to 0.83. This study confirms the critical role of the SMOTE oversampling method in machine learning using the Gaussian Naive Bayes (GNB) algorithm in Metabolic Syndrome prediction and its positive impact on diagnostic efficiency and public health.

Copyrights © 2024






Journal Info

Abbrev

JISKA

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Library & Information Science

Description

JISKa (Jurnal Informatika Sunan Kalijaga) adalah jurnal yang mencoba untuk mempelajari dan mengembangkan konsep Integrasi dan Interkoneksi Agama dan Informatika yang diterbitkan oleh Departemen Teknik Informasi UIN Sunan Kalijaga Yogyakarta. JISKa menyediakan forum bagi para dosen, peneliti, ...