Biner : Jurnal Ilmu Komputer, Teknik dan Multimedia
Vol. 1 No. 6 (2024): BINER : Jurnal Ilmu Komputer, Teknik dan Multimedia

Sistem Pakar Diagnosa Kerusakan Pada Vespa Matic Menggunakan Metode Naïve Bayes Berbasis Web (Studi kasus : PT. Dwi Pratama Mandiri)

Faisal, Ahmad (Unknown)
Heri Yunial, Agus (Unknown)



Article Info

Publish Date
28 Feb 2024

Abstract

The automotive industry in Indonesia is experiencing rapid growth in line with the increasing public need for transportation. Vespa, as a scooter motorcycle brand from Piaggio, an Italian company, contributes to Indonesia's automotive economy. PT Dwi Pratama Mandiri is an authorized dealer of Vespa Matic. Observations show that most consumers still do not understand the potential damage to their vehicles. Expert systems, a branch of artificial intelligence, can be a solution to increase consumer knowledge and speed up the process of identifying defects. The Naïve Bayes method, a probabilistic classification algorithm, has proven efficient in the analysis of complex problems. Previous research shows that this method has a high accuracy rate of up to 96%.. This research aims to help consumers detect and overcome problems with their vehicles, and can improve consumer understanding of damage to Vespa Matic.

Copyrights © 2024






Journal Info

Abbrev

Biner

Publisher

Subject

Humanities Computer Science & IT Engineering Industrial & Manufacturing Engineering Materials Science & Nanotechnology Transportation

Description

1. Komputasi Lunak, 2. Sistem Cerdas Terdistribusi, Manajemen Basis Data, dan Pengambilan Informasi, 3. Komputasi evolusioner dan komputasi DNA/seluler/molekuler, 4. Deteksi kesalahan, 5. Sistem Energi Hijau dan Terbarukan, 6. Antarmuka Manusia, 7. Interaksi Manusia-Komputer, 8. Hibrida dan ...