Jurnal Informatika Polinema (JIP)
Vol. 10 No. 4 (2024): Vol. 10 No. 4 (2024)

Bidirectional and Auto-Regressive Transformer (BART) for Indonesian Abstractive Text Summarization

Hartawan, Gaduh (Unknown)
Maylawati, Dian Sa'adillah (Unknown)
Uriawan, Wisnu (Unknown)



Article Info

Publish Date
30 Aug 2024

Abstract

Automatic summarization technology is developing rapidly to reduce reading time and obtain relevant information in Natural Language Processing technology research. There are two main approaches to text summarization: abstractive and extractive. The challenge of abstractive summarization results is higher than abstractive because abstractive summarization produces new and more natural words. Therefore, this research aims to produce abstractive summaries from Indonesian language texts with good readability. This research uses the Bidirectional and Auto-Regressive Transformer (BART) model, an innovative Transformers model combining two leading Transformer architectures, namely the BERT encoder and GPT decoder. The dataset used in this research is Liputan6, with model performance evaluation using ROUGE evaluation. The research results show that BART can produce good abstractive summaries with ROUGE-1, ROUGE-2, and ROUGE-L values of 37.19, 14.03, and 33.85, respectively.

Copyrights © 2024






Journal Info

Abbrev

jip

Publisher

Subject

Computer Science & IT Control & Systems Engineering Decision Sciences, Operations Research & Management Electrical & Electronics Engineering Library & Information Science

Description

The focus and scope of articles published in JIP (Journal of Informatics Polinema) encompasses the game technology, information system, computer network, computing, which covers the following scope: Game Technology Artificial Intelligence Intelligent System Machine Learning Image Processing Computer ...