International Journal of Robotics and Control Systems
Vol 4, No 3 (2024)

Long Short-Term Memory vs Gated Recurrent Unit: A Literature Review on the Performance of Deep Learning Methods in Temperature Time Series Forecasting

Furizal, Furizal (Unknown)
Fawait, Aldi Bastiatul (Unknown)
Maghfiroh, Hari (Unknown)
Ma’arif, Alfian (Unknown)
Firdaus, Asno Azzawagama (Unknown)
Suwarno, Iswanto (Unknown)



Article Info

Publish Date
05 Sep 2024

Abstract

Temperature forecasting is a crucial aspect of meteorology and climate change studies, but challenges arise due to the complexity of time series data involving seasonal patterns and long-term trends. Traditional methods often fall short in handling this variability, necessitating more advanced solutions to enhance prediction accuracy. LSTM and GRU models have emerged as promising alternatives for modeling temperature data. This study is a literature review comparing the effectiveness of LSTM and GRU based on previous research in temperature forecasting. The goal of this review is to evaluate the performance of both models using various evaluation metrics such as MSE, RMSE, and MAE to identify gaps in previous research and suggest improvements for future studies. The method involves a comprehensive analysis of previous studies using LSTM and GRU for temperature forecasting. Assessment is based on RMSE values and other metrics to compare the accuracy and consistency of both models across different conditions and temperature datasets. The analysis results show that LSTM has an RMSE range of 0.37 to 2.28. While LSTM demonstrates good performance in handling long-term dependencies, GRU provides more stable and accurate performance with an RMSE range of 0.03 to 2.00. This review underscores the importance of selecting the appropriate model based on data characteristics to improve the reliability of temperature forecasting.

Copyrights © 2024






Journal Info

Abbrev

IJRCS

Publisher

Subject

Control & Systems Engineering Electrical & Electronics Engineering

Description

International Journal of Robotics and Control Systems is open access and peer-reviewed international journal that invited academicians (students and lecturers), researchers, scientists, and engineers to exchange and disseminate their work, development, and contribution in the area of robotics and ...