JOURNAL OF APPLIED INFORMATICS AND COMPUTING
Vol. 8 No. 2 (2024): December 2024

DDoS Attacks Detection With Deep Learning Approach Using Convolutional Neural Network

Widodo, Rafiq Amalul (Unknown)
Delimayanti, Mera Kartika (Unknown)
Wulandari, Asri (Unknown)



Article Info

Publish Date
13 Aug 2024

Abstract

The detection system of DDoS (Distributed Denial-of-Service) attacks aims to enhance network security across all facets of internet technology utilization. One is at SPKLU, which stands for Public Electric Vehicle Charging Station. The research employed a deep learning approach utilizing a Convolutional Neural Network (CNN) on a publicly available dataset. Based on our study and analysis, CNN has a precision rate of 95%. Its high accuracy and balanced performance across diverse attack types indicate the model's practical application in real-life situations. The model demonstrates promising performance in detecting different network traffic anomalies, offering significant insight into its potential for practical use. Further investigation is necessary to strengthen the resilience of DDoS assault tactics against emerging dangers and to tackle any potential constraints.

Copyrights © 2024






Journal Info

Abbrev

JAIC

Publisher

Subject

Computer Science & IT

Description

Journal of Applied Informatics and Computing (JAIC) Volume 2, Nomor 1, Juli 2018. Berisi tulisan yang diangkat dari hasil penelitian di bidang Teknologi Informatika dan Komputer Terapan dengan e-ISSN: 2548-9828. Terdapat 3 artikel yang telah ditelaah secara substansial oleh tim editorial dan ...