Pada tahun 2022 WHO menerima laporan dari negara-negara non-endemik tentang kasus penyakit monkeypox (cacar monyet). Saat ini, terdapat 12 negara non-endemik di tiga wilayah WHO yaitu Eropa, Amerika, dan Pasifik Barat yang dilaporkan telah terjangkit virus cacar monyet. Monkeypox menunjukkan gejala serupa dengan cacar tetapi dengan tingkat keparahan yang berbeda, memerlukan identifikasi dan penanganan yang cepat untuk mencegah penularan lebih lanjut. Identifikasi penyakit monkeypox secara cepat dan akurat dapat dilakukan dengan pendekatan kecerdasan buatan yaitu model machine learning. Salah satu metode yang dapat digunakan untuk melakukan analisis data citra medis adalah metode Gradient Boosting. Penelitian ini mengembangkan konsep model klasifikasi penyakit monkeypox dengan menerapkan arsitektur Deep Learning, yaitu SqueezNet + chi-square, tiga metode Gradient Boosting sebagai metode klasifikasi. Hasil eksperimen menunjukkan kombinasi model SqueezNet + chi-square + XGBoost menghasilkan performansi yang lebih baik dari kombinasi dua model yang lain, dengan akurasi sebesar 0.943, presisi sebesar 0.942, dan AUC sebesar 0.987.
Copyrights © 2024