Ayu, Desiana Wulaning
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Performansi Parameter pada Arsitektur U-Net untuk Segmentasi Nukleus pada Citra Kanker Serviks Ayu, Desiana Wulaning; Pradipta, Gede Angga
Jurnal Sistem dan Informatika (JSI) Vol 18 No 2 (2024): Jurnal Sistem dan Informatika (JSI)
Publisher : Direktorat Penelitian,Pengabdian Masyarakat dan HKI - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/jsi.v18i2.607

Abstract

Pap Smear adalah salah satu metode untuk memeriksa sel-sel serviks. Sel-sel tersebut diperiksa dengan mikroskop untuk mengamati perubahan atau ketajaman sel epitel serviks sebagai tanda awal adanya keberadaan kanker. Namun, pemeriksaan Smear Pap secara manual memiliki beberapa kekurangan, yaitu membutuhkan waktu yang relatif lama dan peluang terjadinya kesalahan selama analisis besar karena bersifat subjektif. Namun, citra mikroskopis Pap Smear sulit untuk diinterpretasi, karena terdapat sel-sel yang berkelompok, tumpang tindih, adanya sel-sel inflamasi, bekas darah, kontras rendah, dan variasi dalam pencahayaan yang terjadi karena metode pewarnaan yang tidak konsisten seperti konsentrasi zat pewarna. Salah satu model dalam melakukan interpretasi citra adalah dengan segmentasi citra, maka penelitian ini berfokus pada pengembangan metode segmentasi menggunakan pendekatan model semantic segmentation U-Net dengan arsitektur dari Roonerberger. Penelitian ini menganalisis beberapa penggunaan hyperparameter untuk mengetahui performansi dari arsitektur model U-NET khususnya untuk mengsegmentasi AF. Adapun tuning hyperparameter terdapat pada optimizer, loss function, learning rate serta jumlah epoch. Performa terbaik U-Net dalam melakukan segmentasi cairan ketuban adalah dengan kombinasi parameter optimizer RMSprop, Loss function adalah Binary cross entropy, nilai learning rate 0.00001 dengan Epoch sebesar 31 dengan DSC sebesar 0.82 dan IoU sebesar 0.70, akurasi sebesar 0.8, presisi 0.78, recall 0.81.
SqueezeNet Feature Extraction dan Gradient Boosting untuk Klasifikasi Penyakit Monkeypox pada Citra Kulit Ayu, Desiana Wulaning; Pradipta, Gede Angga
Jurnal Sistem dan Informatika (JSI) Vol 18 No 2 (2024): Jurnal Sistem dan Informatika (JSI)
Publisher : Direktorat Penelitian,Pengabdian Masyarakat dan HKI - Institut Teknologi dan Bisnis (ITB) STIKOM Bali

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30864/jsi.v18i2.612

Abstract

Pada tahun 2022 WHO menerima laporan dari negara-negara non-endemik tentang kasus penyakit monkeypox (cacar monyet). Saat ini, terdapat 12 negara non-endemik di tiga wilayah WHO yaitu Eropa, Amerika, dan Pasifik Barat yang dilaporkan telah terjangkit virus cacar monyet. Monkeypox menunjukkan gejala serupa dengan cacar tetapi dengan tingkat keparahan yang berbeda, memerlukan identifikasi dan penanganan yang cepat untuk mencegah penularan lebih lanjut. Identifikasi penyakit monkeypox secara cepat dan akurat dapat dilakukan dengan pendekatan kecerdasan buatan yaitu model machine learning. Salah satu metode yang dapat digunakan untuk melakukan analisis data citra medis adalah metode Gradient Boosting. Penelitian ini mengembangkan konsep model klasifikasi penyakit monkeypox dengan menerapkan arsitektur Deep Learning, yaitu SqueezNet + chi-square, tiga metode Gradient Boosting sebagai metode klasifikasi. Hasil eksperimen menunjukkan kombinasi model SqueezNet + chi-square + XGBoost menghasilkan performansi yang lebih baik dari kombinasi dua model yang lain, dengan akurasi sebesar 0.943, presisi sebesar 0.942, dan AUC sebesar 0.987.