Social media is now an important platform for sharing information, expressing opinions, and daily feelings or emotions. The expression of emotions such as anger, sadness, fear, happiness, disappointment, and so on social networks can be further analyzed either for business purposes or just analyzing the habits of a community or someone's posts.  However, analyzing manually will be a time-consuming process, and the use of conventional methods can affect the results of less accurate accuracy. This research aims to improve the accuracy of recognizing emotions in text by using the Bidirectional Long Short Term Memory (Bi-LSTM) method, which is a subset of RNNs that tend to be more stable during training and show better performance on various NLP and other processing tasks. The method used includes several stages, namely preprocessing, tokenization, sequence padding, and modeling. The results of this study show that the Bi-LSTM model is capable of predicting emotions in text with an accuracy of 94.45% because it excels in handling the temporal context and can avoid vanishing gradients.
                        
                        
                        
                        
                            
                                Copyrights © 2024