Quadcopter technology has developed fast because it’s flexibility and capacity for high maneuvers. What makes PMSM suitable for Quadcopter is their high power to weight ratio, reliability and efficiency. These motors allow the operation of torque and speed control which are important for stability and maneuverability in the flight of the aircraft. Nevertheless, certain and smooth flight caused by regulation of PMSM speed and current is necessary for stable and maneuverable movement. This work presents a new control strategy connecting the ILQR control to govern the speed while the PCC profit the dynamic response and control torque ripples. A comparison is made on the performance of the ILQR-PCC system with nominal Proportional-Integral (PI) control and ILQR. From the results it is evident that the ILQR-PCC system is far superior to both the PI ILQR controller in regards to the dynamic response, the disturbances rejection capacity as well as reducing the current signal distortions hence reducing the torque ripples. Its working was evidenced in a nonlinear LQR-controlled quadcopter to track the reference accurately and to have minimum distortion in current regulation. The presented work improves the control systems of quadcopters: it introduces a reliable method that improves stability and increases the performance of the quadcopter; therefore, this paper contributes to the existing knowledge.
Copyrights © 2024