Jurnal Informatika Teknologi dan Sains (Jinteks)
Vol 6 No 3 (2024): EDISI 21

OPTIMASI ALGORITMA NAIVE BAYES BERBASIS KERNEL UNTUK KLASIFIKASI PENYAKIT HATI

Prasetyo, Muhammad A'an (Unknown)
Zyen, Akhmad Khanif (Unknown)
Kusumodestoni, R. Hadapiningradja (Unknown)



Article Info

Publish Date
24 Sep 2024

Abstract

Liver disease is a serious health problem that requires early and accurate diagnosis. This study develops and evaluates a kernel-based Naive Bayes algorithm for liver disease classification, comparing it with standard Naive Bayes. A dataset from Kaggle was used, covering a wide range of medical variables. After data preprocessing, both models are trained and evaluated using standard metrics. Results show significant improvements over the kernel-based model, with accuracy reaching 99% compared to 80% for the standard model. Feature importance and learning curves analysis is carried out for deeper understanding. This study demonstrates the great potential of using kernel-based Naive Bayes in improving liver disease diagnosis, which may contribute to improved clinical outcomes and quality of patient care.

Copyrights © 2024






Journal Info

Abbrev

JINTEKS

Publisher

Subject

Computer Science & IT Control & Systems Engineering

Description

Jurnal Informatika Teknologi dan Sains (JINTEKS) merupakan media publikasi yang dikelola oleh Program Studi Informatika, Fakultas Teknik dengan ruang lingkup publikasi terkait dengan tema tema riset sesuai dengan bidang keilmuan Informatika yang meliputi Algoritm, Software Enginering, Network & ...