Seminar Nasional Riset dan Teknologi (SEMNAS RISTEK)
Vol 8, No 01 (2024): SEMNAS RISTEK 2024

KLASIFIKASI PENYAKIT DAUN TOMAT BERBASIS ALGORITMA K-NEAREST NEIGHBOR

Muslih, Muslih (Unknown)
Krismawan, Andi Danang (Unknown)



Article Info

Publish Date
31 Jan 2024

Abstract

Penelitian ini mendalami tantangan dalam pemantauan kesehatan tanaman tomat, yang memiliki peran penting dalam industri pertanian dan perekonomian petani di seluruh dunia. Penyakit-penyakit seperti busuk akar dan hawar daun merupakan ancaman serius yang dapat merusak hasil panen dan mengurangi kualitas tanaman tomat. Dalam upaya mengatasi tantangan ini, penelitian ini menggunakan algoritma K-Nearest Neighbor (KNN) sebagai metode analisis klasifikasi penyakit pada daun tomat. Evaluasi dilakukan melalui tiga percobaan dengan variasi nilai K (K=1, 2, dan 3). Hasilnya menunjukkan bahwa meskipun K=1 mencapai akurasi tertinggi, nilai K=3 memberikan keseimbangan yang baik antara akurasi, kompleksitas model, dan ketahanan terhadap overfitting. Dengan akurasi rata-rata sebesar 88%, model KNN dengan nilai K=3 menjadi pilihan yang handal dalam mengidentifikasi penyakit daun tomat dengan tingkat akurasi yang memadai, memungkinkan pemantauan yang cermat terhadap kesehatan tanaman tomat untuk pemenuhan kebutuhan pangan dunia yang berkelanjutan.

Copyrights © 2024






Journal Info

Abbrev

semnasristek

Publisher

Subject

Civil Engineering, Building, Construction & Architecture Computer Science & IT Education Engineering Other

Description

Prosiding ini berisi artikel-artikel yang telah didesiminasikan dalam acara Seminar Nasional Riset dan Inovasi Teknologi (SEMNAS RISTEK) yang diselenggarakan oleh Program Studi Teknik Informatika, FTIK, Universitas Indraprasta PGRI. Penyelenggaraan SEMNAS RISTEK dimulai tahun 2017 dengan publikasi ...