JITK (Jurnal Ilmu Pengetahuan dan Komputer)
Vol. 10 No. 2 (2024): JITK Issue November 2024

MOBILENET PERFORMANCE IMPROVEMENTS FOR DEEPFAKE IMAGE IDENTIFICATION USING ACTIVATION FUNCTION AND REGULARIZATION

Handrie Noprisson (Universitas Dian Nusantara)
Vina Ayumi (Universitas Dian Nusantara)
Mariana Purba (Universitas Sjakhyakirti)
Nur Ani (Universiti Kebangsaan Malaysia)



Article Info

Publish Date
25 Nov 2024

Abstract

Deepfake images are often used to spread false information, manipulate public opinion, and harm individuals by creating fake content, making developing deepfake detection technology essential to mitigate these potential dangers. This study utilized the MobileNet architecture by applying regularization and activation function methods to improve detection accuracy. ReLU (Rectified Linear Unit) enhances the model's efficiency and ability to capture non-linear features, while Dropout and L2 regularization help reduce overfitting by penalizing large weights, thereby improving generalization. Based on experimental results, the MobileNet model optimized with ReLU and Dropout achieved an accuracy of 99.17% in the training phase, 85.34% in validation, and 70.60% in testing, whereas the MobileNet model optimized with ReLU and L2 showed lower accuracy in the training and validation phases compared to Dropout but achieved higher accuracy in testing at 72.18%. This study recommends MobileNet with ReLU and L2 due to its better generalization ability when testing data (resulting from reduced overfitting).

Copyrights © 2024






Journal Info

Abbrev

jitk

Publisher

Subject

Computer Science & IT

Description

Kegiatan menonton film merupakan salah satu cara sederhana untuk menghibur diri dari rasa gundah gulana ataupun melepas rasa lelah setelah melakukan aktivitas sehari-hari. Akan tetapi, karena berbagai alasan terkadang seseorang tidak ada waktu untuk menonton film di bioskop. Dengan bantuan media ...