Jurnal Teknik Industri : Jurnal Hasil Penelitian dan Karya Ilmiah dalam Bidang Teknik Industri
Vol 10, No 2 (2024): December 2024

Predictive Maintenance on Dry 8 Production Machine Line Using Support Vector Machine (SVM)

Rasyid, Mohammad Andi (Unknown)
Sukmono, Tedjo (Unknown)
Jakaria, Ribangun Bamban (Unknown)



Article Info

Publish Date
07 Sep 2024

Abstract

Machines are the main element in manufacturing companies, and the role of machine performance is vital in the production process. Downtime problems caused by machine damage can significantly affect company productivity. This research implements the support vector machine (SVM) method for predicting Dry 8 production machine line maintenance, which aims to reduce downtime and increase productivity. The SVM method is known for its high accuracy and low error rate. The evaluation process used four kernel functions: linear, radial basis function (RBF), polynomial and sigmoid. The linear kernel function performed best with 99.8% accuracy, 83% precision, recall, and f1-score. These results show that the SVM method can be a viable solution to improve the efficiency of machine maintenance. Keywords: Confusion Matrix, Machine Learning, Predictive Maintenance, Support Vector Machine 

Copyrights © 2024






Journal Info

Abbrev

jti

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Engineering Environmental Science Industrial & Manufacturing Engineering

Description

(ISSN : 2460-898X) JTI merupakan jurnal akademik yang dipublikasikan 2 kali setahun, meliputi bulan Juni dan Desember. Tujuan jurnal ini menyediakan tulisan yang memiliki yang fokus pada bidang Teknik Industri. lebih lanjut jurnal ini dipulikasikan oleh Jurusan Teknik Industri Fakultas Sains dan ...