Claim Missing Document
Check
Articles

PENGEMBANGAN KNOWLEDGE SHARING PADA PENINGKATAN KETERHANDALAN Sudjito Suparman3), dan Purnomo Budi Santoso4), Tedjo Sukmono1), Pratikto2),
JURNAL TEKMAPRO Vol 9, No 2 (2014): JURNAL TEKMAPRO
Publisher : JURNAL TEKMAPRO

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (148.973 KB)

Abstract

ABSTRAK Salah satu hal yang mendukung kelancaran kegiatan operasi pada suatu perusahaan adalah kesiapan mesin-mesin produksi dalam melaksanakan tugasnya, utnuk mencapai hal tersebut diperlukan adanya sistem perawatan yang baik.  Maintainability dapat didefinisikan juga sebagai kemampuan suatu peralatan atau mesin untuk dipelihara dimana perawatan merupakan serangkaian tindakan yang diambil untuk mempertahankan atau memperbaiki mesin sehingga mesin dalam kondisi siap pakai menurut Imam Sodikin (2008). Untuk mengoptimumkan maintainabilitas sistem ada dua factor yang perlu diperhatikan yaitu model knowledge sharing perawatan (maintenance model) dan perancangan untuk mendapatkan tingkat reliability tertentu. Pada idealnya semakin banyak jam mesin yang tersedia maka semakin banyak produk yang dihasilkan. Berdasarkan hasil analisis, pada perusahaan “X”  waktu rata-rata diantara kerusakan untuk jenis kerusakan A 285,71jam, B 555,56jam, C 1020,41jam. Nilai Reliability mesin mixer scanima untuk jenis kerusakan A 95,9%, jenis kerusakan B 97,9%, untuk jenis kerusakan C 98,8%. Dari perhitungan Maintanability didapat, waktu rata-rata diantara perawatan untuk jenis kerusakan A 255,45jam, B 464,46jam, C 729,87jam. Didapat nilai Availability untuk semua jenis kerusakan mencapai diatas 98,8%. Total biaya perawatan pertahunnya untuk penjadwalan perawatan yang baru lebih hemat Rp. 334.938.472,76/tahun dengan penjadwalan yang lama.Kata kunci : Knowledge Sharing,  TPM (Total Productivity maintenance), Reliability) .ABSTRAK Salah satu hal yang mendukung kelancaran kegiatan operasi pada suatu perusahaan adalah kesiapan mesin-mesin produksi dalam melaksanakan tugasnya, utnuk mencapai hal tersebut diperlukan adanya sistem perawatan yang baik. Maintainability dapat didefinisikan juga sebagai kemampuan suatu peralatan atau mesin untuk dipelihara dimana perawatan merupakan serangkaian tindakan yang diambil untuk mempertahankan atau memperbaiki mesin sehingga mesin dalam kondisi siap pakai menurut Imam Sodikin (2008). Untuk mengoptimumkan maintainabilitas sistem ada dua factor yang perlu diperhatikan yaitu model knowledge sharing perawatan (maintenance model) dan perancangan untuk mendapatkan tingkat reliability tertentu. Pada idealnya semakin banyak jam mesin yang tersedia maka semakin banyak produk yang dihasilkan. Berdasarkan hasil analisis, pada perusahaan “X” waktu rata-rata diantara kerusakan untuk jenis kerusakan A 285,71jam, B 555,56jam, C 1020,41jam. Nilai Reliability mesin mixer scanima untuk jenis kerusakan A 95,9%, jenis kerusakan B 97,9%, untuk jenis kerusakan C 98,8%. Dari perhitungan Maintanability didapat, waktu rata-rata diantara perawatan untuk jenis kerusakan A 255,45jam, B 464,46jam, C 729,87jam. Didapat nilai Availability untuk semua jenis kerusakan mencapai diatas 98,8%. Total biaya perawatan pertahunnya untuk penjadwalan perawatan yang baru lebih hemat Rp. 334.938.472,76/tahun dengan penjadwalan yang lama.Kata kunci : Knowledge Sharing, TPM (Total Productivity maintenance), Reliability) .
Perencanaan Jumlah Bahan Baku Produksi Soda Caustic PT. XK Dengan Metode Algoritma K-Nearest Neighbour Rohman, Abdul; Sukmono, Tedjo
Jurnal SENOPATI : Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering Vol 2, No 1 (2020): Jurnal SENOPATI Vol.2 No.1
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.senopati.2020.v2i1.924

Abstract

Dalam proses kegiatan produksi soda caustic PT. XK, Maka diperlukannya perencanaan kesiapan bahan baku utama berupa garam granul (NaCl) yang diharapkan tepat perencanaan dengan melakukan prediksi pada ketersediaan bahan baku utama menggunkan metode algoritma K- Nearest Neighbour hingga bisa membantu perusahaan dalam merencankan jumlah bahan baku utama untuk kelancaran kegiatan industri. Dengan begitu PT.XK dapat menjamin kelancaran kegiatan produksi dan kapasitas produksi untuk melayani permintaan konsumen pada produk soda caustic (NaOH). Algoritma K- Nearest Neighbour merupakan proses mining data yang tergolong dalam kategori machine learning (supervised learning) yang berdasarkan pada basis instance atau kedekatan antara data latih dan data uji dengan rumus eucledian distance guna mencari hasil jarak terdekat. Dalam melakukan prediktif untuk perencanaan yang diinginkan maka perlu mengukur tingkat keakurasian data, data recall, data presisi dan kurva ROC (receiver operating characteristic). Maka  berdasarkan penelitian yang dilakukan mendapatkan hasil prediktif guna merencanakan jumlah bahan baku selama satu periode yang akan datang dengan keakuratan data prediksi sebesar 92,67%, dengan perbandingan data recall dan presisi data, sehingga menghasilkan kurva ROC (receiver operating characteristic) sebesar 0,75 dimana prediksi tergolong cukup baik.
Optimization of Inventory Costs Using the Continuous Review System (CRS) Method in Controlling the Need for Raw Materials for the Crimean Industry Varid Jainuri; Tedjo Sukmono
Academia Open Vol 5 (2021): December
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (232.373 KB) | DOI: 10.21070/acopen.5.2021.2205

Abstract

Forecasting is an estimate of something that has not happened or will happen in the future. Determination of the policies implemented by the company resulted in more costs for storage costs, resulting in wastage of costs and reduced company profits due to the accumulation of capital in the form of raw materials that had not been produced. This study describes the planning and control of sodium caseinate inventory. Of the many inventory control planning methods, the continuous review system model is used to determine the optimal number of orders and when orders are made. The total cost of inventory based on average usage in 2018 to 2020 is IDR 252,323,882,141.00 per year. The results showed that the continuous review system lost sales inventory control model has a minimum total inventory cost of Rp. 251,641,850,991.00 per year with an optimal number of orders.
Determination of Production Instrumentation Equipment Maintenance Intervals In the Paper Industry Nurma M. Hidayatulloh; Tedjo Sukmono
PROZIMA (Productivity, Optimization and Manufacturing System Engineering) Vol 4 No 1 (2020): Juni
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/prozima.v4i1.1275

Abstract

PT. XYZ is a manufacturing industry engaged in paper processing with afval raw materials. The problem faced is machine failure that occurs suddenly without predictability, this is because there is no scheduled maintenance (preventive main-tenance). The object of this research is focused on production instrumentation equipment. This study uses the Failure Mode and Effect Analyzer (FMEA) method to identify the causes of failure and the effects of these failures by determining the critical value of the component, namely the Risk Priority Number (RPN) which is the largest, then the Reliability Centered Maintenance (RCM) II Decision Worsheet method for determine maintenance intervals of production instrumentation equipment. Based on the results of RPN calculations in the FMEA method to determine the critical components of the Instrumentation equipment, namely the Control Valve, it can be seen that the highest total RPN value is found in three components, namely Restrictor with an RPN value of 390, Power Supply with RPN of 297, and also a Pilot Positioner. with an RPN value of 240. And with optimum maintenance intervals, among others, the Restrictor every 40 hours, the Power Supply every 41 hours, and the Pilot Positioner every 47 hours.
Improving Product Quality With Production Quality Control Suhadak; Tedjo Sukmono
PROZIMA (Productivity, Optimization and Manufacturing System Engineering) Vol 4 No 2 (2020): Desember
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/prozima.v4i2.1306

Abstract

PT. Z is a company engaged in the plastic bag industry. The company produces plastic bags, one of which is a type of ATP 12 x 24 that is often used as plastic wrapping meatballs, sugar and others. A company is certainly required to provide the best quality on its products. To meet the needs and expectations of consumers for the quality of products, the company must improve the quality of existing products. Six sigma is a quality tool that can be used to analyze and process data to maintain or improve the quality of a product based on the process. One of the shorts used in the six sigma method is Define, Measure, Analyze, Improve and Control ( DMAIC). This research focuses on the results of product defects produced for 5 months in 2019. Because of the process analyzed there is data of proportions that are out of control in july and november. So that the data is omitted so that the data can be controlled. The sigma production level of ATP 12 x 24 is currently at the level of 4 sigma so it is necessary to improve to reach the level of 6 sigma. Pareto diagrams and fishbone diagrams can be used as tools to analyze significant factors causing product defects. And it can be known that the causative factor that can be done repair is deflated.
Analysis of Motorcycle Service Queues at Honda Authorized Dealers Erwin Widiantono; Tedjo Sukmono
PROZIMA (Productivity, Optimization and Manufacturing System Engineering) Vol 1 No 2 (2017): December
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/prozima.v1i2.1297

Abstract

Ahass honda merupakan suatu perusahaan yang menawarkan pelayanan jasa service sepeda motor honda. Salah satu produk jasa yang menawarkan service motor seperti service ringan, service besar, injector clener, overhauld, ganti oli. Populasi kedatangan pelanggan di bagian service cukup banyak sehinggan mekanik tidaak dapat melayani secara optimal. Dengan simulasi menggunakan promodel dengan 4 pitstop maka mekanik dapat melayani sebanyak 60 motor saja dengan masing-masing mekanik melayani 15 motor. Dari usulan data yang telah di kumpulkan didapat 70 kedatangan dengan 5 pitstop dan 33 menit waktu service dengan perhitungan menggunakan Multiple Server di dapat hasil 7 menit waktu tunggu dan 5 unit pitstop dengan perhitungan menggunakan simulasi promodel di dapat dari kapasitas 70 yang dapat di tangani oleh mekanik adalah 69-70 motor setiap harinya.
Production Forecasting Using Autoregressive Integrated Moving Average (ARIMA) Method at PT. XYZ Mohammad Buchori; Tedjo Sukmono
PROZIMA (Productivity, Optimization and Manufacturing System Engineering) Vol 2 No 1 (2018): June
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/prozima.v2i1.1290

Abstract

In production planning and control the first step is to forecast to determine how much production, the company forecasting is still not optimal, because forecasting has an important role in a company. PT. XYZ is a food company that produces chicken meatballs and chicken dumplings. So from that this study uses the forecasting method Autoregressive Integreted Moving Average (ARIMA). ARIMA is often also called the Box-Jenkins time series method. ARIMA is very good for short-term forecasting, while for long-term forecasting the forecasting accuracy is not good. The purpose of this research is to get a good ARIMA model, used to forecast production in the company. So that the production becomes optimal and not excessive which can cause waste of raw materials, which will make production costs a lot. Data processing is done with the help of an Eviews computer program to determine a good ARIMA model, from processing data obtained by ARIMA (1.0,0). With the results obtained forecasting in the period 37 to period 48.
Determination of Preventive Maintenance Time Intervals on Nail Making Machines Using Reliability Centered Maintenance (RCM) II . Method Muhammad Arizki Zainul Ramadhan; Tedjo Sukmono
PROZIMA (Productivity, Optimization and Manufacturing System Engineering) Vol 2 No 2 (2018): December
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21070/prozima.v2i2.1349

Abstract

With the increasing needs of productivity and the use of high technology in the form of machines and production facilities, the need for maintenance functions is growing. At PT. Surabaya Wire that produces nails and wires of problems that arise especially related to damage to nail making machine, it causes the hours to stop (downtime) and delay in the production process so that the engine performance becomes less effective. The purpose of the research is to determine the time interval schedule of care and know the action or maintenance activities to be done. To solve the problem in this research using Reliability Centered Maintenance (RCM) II method with Failure Modes and Effect Analyze (FMEA) calculation. RCM II defined a process used to determine what should be done for machine maintenance, whereas for FMEA it is defined as a method to identify the highest failure form on any machine malfunction. From the calculation result using FMEA and RCM II, we got treatment interval result on side shaft component (metal handlebar) with maintenance interval for 63 hours, for crank shaft component (metal road) with maintenance interval for 81 hours, and for Electric motor component with maintenance interval for 374 hours.
Perencanaan Jumlah Bahan Baku Produksi Soda Caustic PT. XK Dengan Metode Algoritma K-Nearest Neighbour Abdul Rohman; Tedjo Sukmono
Jurnal SENOPATI : Sustainability, Ergonomics, Optimization, and Application of Industrial Engineering Vol 2, No 1 (2020): Jurnal SENOPATI Vol.2 No.1
Publisher : Institut Teknologi Adhi Tama Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31284/j.senopati.2020.v2i1.924

Abstract

Dalam proses kegiatan produksi soda caustic PT. XK, Maka diperlukannya perencanaan kesiapan bahan baku utama berupa garam granul (NaCl) yang diharapkan tepat perencanaan dengan melakukan prediksi pada ketersediaan bahan baku utama menggunkan metode algoritma K- Nearest Neighbour hingga bisa membantu perusahaan dalam merencankan jumlah bahan baku utama untuk kelancaran kegiatan industri. Dengan begitu PT.XK dapat menjamin kelancaran kegiatan produksi dan kapasitas produksi untuk melayani permintaan konsumen pada produk soda caustic (NaOH). Algoritma K- Nearest Neighbour merupakan proses mining data yang tergolong dalam kategori machine learning (supervised learning) yang berdasarkan pada basis instance atau kedekatan antara data latih dan data uji dengan rumus eucledian distance guna mencari hasil jarak terdekat. Dalam melakukan prediktif untuk perencanaan yang diinginkan maka perlu mengukur tingkat keakurasian data, data recall, data presisi dan kurva ROC (receiver operating characteristic). Maka  berdasarkan penelitian yang dilakukan mendapatkan hasil prediktif guna merencanakan jumlah bahan baku selama satu periode yang akan datang dengan keakuratan data prediksi sebesar 92,67%, dengan perbandingan data recall dan presisi data, sehingga menghasilkan kurva ROC (receiver operating characteristic) sebesar 0,75 dimana prediksi tergolong cukup baik.
Entertainment Cost Efficiency Analysis With Data Envelopment Analysis (Dea) And Fuzzy Logic (Flp & C-Iowa) Approach To Sales Level Dwi Kakung Saputro; Tedjo Sukmono
Procedia of Engineering and Life Science Vol 1 No 1 (2021): Proceedings of the 1st Seminar Nasional Sains 2021
Publisher : Universitas Muhammadiyah Sidoarjo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.261 KB) | DOI: 10.21070/pels.v1i1.853

Abstract

It caused some problems regarding to calculation and measurement of costs which is issued for the level of efficiency desired by the company, namely PT. LLL Surabaya. From the results of measurements and analysis, it shows that system has objective value in “efficient” category. Therefore, the ranking results of regional operating system (DMU3) are the most optimal in terms of sales capacity, which is Rp. 11,745,050,779. It is caused by the impact of providing these costs. Based on the decision-making preferences related to the entertainment costing system, (CI) value is 0.18 for (P1) and 0.03 for (P2). It means that marketing department has more preference for entertainment costing system should be given constantly with the aim that total sales capacity can continue to increase.
Co-Authors Abdul Rohman Abdul Rohman Adinda Chamilia Mishani Adistyas Nastiti, Octavia Afrilia, Riska Ahmad Fikri Ardianto Alfian Fajar Gunawan Ali Sadikin Amatullah, Dhiny Ari Rio De Setiawan Asni Johari Atikha Sidhi Cahyana Atikha Sidhi Cahyana Boy Isma Putra Dawam Suprayogi Devira Kusuma Wardhani Dewi Nur Atika Dikril Ilham Syaifullah Diwanti Faradiba, Nabila Dristiana, Fila Dwi Kakung Saputro Dzati Fauziyah Erwin Widiantono Fajar Dwi Mauli Fila Dristiana Fitrah Cornellya Angela Gusti Nurina Azhariani Hadian, Mohammad Ekki Hafizah, Mutia Hana Catur Wahyuni Harlis Harlis Hartanti, Lusia Permata Sari Hery Murnawan, Hery Ihsan, Mahya Indah Apriliana Sari Indah Apriliana Sari W Indah Apriliana Sari Wulandari Jamaluddin Jamaluddin Khairatinisa, Khairatinisa Krisna Risky Putra Irawan Leksono, Rudy Bowo Lely Lindyawati M.Haris Efendi Hsb Marodiyah, Inggit Meisya Azzahra Rachman Mochammad Imam Mashuri Mohammad Buchori Much Syafiudin Muhammad Arizki Zainul Ramadhan Muhammad Dio Dwi Septian Mukhammad Surya Lesmana Muswita Muswita Nafis Khumaidah Natalia, Desfaur Novi Prastyanda Putra Pratama Nugraha, A. Prima Nugroho, Dizsa Arliansyah Nurma M. Hidayatulloh Octavia Adistyas Nastiti Putra, Tri Syukria Putri, Andini Faizatul Putri, Melinda Aprilia Radiana Atika Sari Rasyid, Mohammad Andi Ribangun Bamban Jakaria Rizky Janatul Magwa Rudy Bowo Leksono Salsabila, Nisrina Sanjaya, Muhammad Erick Saputra, Nur Qomaruddin Sari Wulandari, Indah Apriliana Sigit Wahono sisiliani, fitria trisna Suhadak Tia Wulandari Upik Yelianti Utomo, Pradita Eko Prasetyo Varid Jainuri Wahono, Sigit Wahyu Nugroho Wahyu Setiawan, Ardhi Wijatmiko, Erie Fadma Noer Fitriana Winda Dwi Kartika, Winda Dwi Wiwik Puji Lestari Wiwik Sulistiyowati Wulandari, Indah Apriliana Sari Yoppie Wulanda Yusuf Effri Prastyo Budi Zahara Sofillauny