This research compares the performance of the Support Vector Machine (SVM) and Naïve Bayes algorithms in sentiment analysis of TikTok comments about skincare products, using the Synthetic Minority Over-sampling Technique (SMOTE) to address data imbalance. The evaluation results indicate that SVM outperforms Naïve Bayes, achieving an accuracy of 59.43% compared to 47.65%. Additionally, SVM excels in the F1 Score metric (60.37% versus 54.74%), although Naïve Bayes demonstrates slightly higher precision (67.96% compared to 62.76%). Therefore, SVM proves to be more effective in classifying sentiment comments, making it the recommended algorithm for sentiment analysis tasks in the skincare product domain on TikTok.
                        
                        
                        
                        
                            
                                Copyrights © 2024