J-Intech (Journal of Information and Technology)
Vol 12 No 1 (2024): J-Intech : Journal of Information and Technology

Identifikasi Tanda Tangan Dengan Menggunakan Metode Convolution Neural Network (CNN)

Indriani.S, Dechy Deswita (Unknown)
Sinaga, Elya Juni Arta (Unknown)
Oktavia, Grace (Unknown)
Syahputra, Hermawan (Unknown)
Ramadhani, Fanny (Unknown)



Article Info

Publish Date
30 Jun 2024

Abstract

This research aims to develop and evaluate a Convolutional Neural Network (CNN) model for signature identification. The CNN method is chosen for its capability to extract and analyze complex visual features from signature images. The data used in this study consists of a collection of signature images divided into training and testing sets. The proposed CNN model comprises several convolutional, pooling, and fully connected layers optimized for classification tasks. Evaluation results indicate that the CNN model achieves excellent performance with an accuracy of 0.97, demonstrating high accuracy and precision in signature recognition. With these results, CNN proves to be an effective and reliable method for signature identification, making a significant contribution to the field of biometric identity verification. These findings open opportunities for further applications in security and authentication systems requiring automatic signature recognition.

Copyrights © 2024






Journal Info

Abbrev

J-INTECH

Publisher

Subject

Computer Science & IT Decision Sciences, Operations Research & Management Engineering Library & Information Science

Description

J-INTECH merupakan jurnal yang diterbitkan oleh Lembaga Penelitian & Pengabdian kepada Masyarakat (LPPM), Sekolah Tinggi Informatika dan Komputer Indonesia Malang. Ruang lingkup jurnal ini pada bidang Teknik Informatika, Sistem Informatika, dan Manajemen Informatika. Tujuannya guna mengakomodasi ...