Abstract: The development of AI assistants such as Gemini and ChatGPT can significantly assist in daily human tasks. In the field of Sentiment Analysis, AI assistants can be utilized as an automated labeling alternative to provide positive, negative, or neutral sentiments within a dataset. This research aims to enhance the performance of AI assistants in automated labeling processes by employing the Feature Selection algorithm, specifically Forward Selection. The methodology involves utilizing the Naïve Bayes and K-NN algorithms, and subsequently improving accuracy through the Feature Selection algorithm. The evaluation is conducted using K-Fold Cross Validation. Research findings indicate an improvement in the accuracy of the best model, which is ChatGPT, when using the Naïve Bayes algorithm and Shuffled Sampling technique. The initial accuracy of 79.09% increased to 87.18% after Feature Selection was applied. This demonstrates the effectiveness of Feature Selection, particularly Forward Selection, in enhancing the accuracy performance of the model. Keywords: ai; assistant; chat gpt; feature selection; gemini. Abstrak: Pekembangan Asisten AI seperti Gemini dan Chat GPT dapat membantu pekerjaan manusia sehari-hari. Dalam bidang Analisis Sentimen, Asisten AI dapat digunakan sebagai alternatif pelabelan otomatis untuk memberikan sentimen positif, negatif atau netral dalam suatu dataset. Penlitian ini bertujuan untuk meningkatkan performa yang dihasilkan oleh Asisten AI dalam proses pelabelan otomatis menggunakan Algortima Feature Selection yaitu Forward Selection. Metode yang digunakan adalah dengan menggunakan Algoritma Naïve Bayes dan K-NN kemudian hasil akurasi akan ditingkatkan menggunkan Algoritma Feature Selection. Evaluasi yang digunakan adalah K-Fold Cross Validation. Hasil penelitian menunjukkan peningkatan akurasi model terbaik berada pada Chat GPT dengan menggunakan Algoritma Naïve Bayes dan Teknik Shuffled Sampling, dari nilai akurasi awal sebesar 79.09%, setelah ditingkatkan menggunakan Feature Selection, maka nilai akurasinya meningkat menjadi 87.18%. Hal ini membuktikan peran Feature Selection, dimana yang digunakan adalah Forward Selection dalam meningkatkan akurasi ternyata memang efektif dalam meningkatkan performa akurasi model. Kata kunci: ai; assisten; chat gpt; feature selection; gemini
Copyrights © 2024