Abstract: Heart disease is one of the leading causes of death worldwide, making early detection and accurate diagnosis crucial for reducing mortality rates and improving patient outcomes. This study aims to evaluate the effectiveness of four machine learning algorithms—Logistic Regression, Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)—in predicting heart disease, with a focus on enhancing model performance using Linear Discriminant Analysis (LDA) for feature reduction. Among the models, SVM achieved the highest accuracy at 84.24%, followed by Logistic Regression at 83.70%. Although Random Forest and KNN showed lower accuracies, all models benefited from LDA's dimensionality reduction. This study suggests that SVM, combined with LDA, offers an optimal solution for early and accurate heart disease prediction in the healthcare industry. Keywords: feature reduction; heart disease; linear discriminant analysis (LDA); machine learning; SVM Abstrak: Penyakit jantung merupakan salah satu penyebab utama kematian di seluruh dunia, sehingga deteksi dini dan diagnosis yang akurat sangat penting untuk menurunkan angka kematian dan meningkatkan hasil pengobatan pasien. Penelitian ini bertujuan untuk mengevaluasi efektivitas empat algoritma pembelajaran mesin—Regresi Logistik, Random Forest, Support Vector Machine (SVM), dan K-Nearest Neighbors (KNN)—dalam memprediksi penyakit jantung, dengan fokus pada peningkatan kinerja model menggunakan Analisis Diskriminan Linear (LDA) untuk reduksi fitur. Di antara model yang diuji, SVM mencapai akurasi tertinggi sebesar 84,24%, diikuti oleh Regresi Logistik dengan 83,70%. Meskipun Random Forest dan KNN menunjukkan akurasi yang lebih rendah, semua model memperoleh manfaat dari reduksi dimensi yang diberikan oleh LDA. Studi ini menunjukkan bahwa SVM yang dikombinasikan dengan LDA merupakan solusi optimal untuk prediksi penyakit jantung secara dini dan akurat dalam industri kesehatan. Kata kunci: linear discriminant analysis (LDA); machine learning; penyakit jantung; reduksi fitur; SVM.
Copyrights © 2024