Identifikasi varietas anggur secara otomatis adalah langkah krusial dalam proses penyortiran dan pengendalian kualitas di sektor makanan. Dalam penelitian ini, kami mengembangkan sistem untuk mengidentifikasi anggur merah dan hijau dengan memanfaatkan kombinasi Median Filter, segmentasi warna menggunakan K-Means Clustering, serta analisis fitur tekstur. Hasilnya menunjukkan bahwa sistem ini mampu mencapai akurasi 95.45% dalam membedakan kedua jenis anggur dengan waktu eksekusi yang efisien. Dengan mengurangi noise melalui Median Filter, melakukan segmentasi warna dalam model warna Lab*, dan mengekstraksi fitur tekstur menggunakan Gray Level Co-occurrence Matrix, metode ini menunjukkan potensi yang signifikan untuk diterapkan dalam sistem penyortiran buah otomatis. Penelitian ini berkontribusi pada peningkatan efisiensi dan akurasi dalam identifikasi varietas anggur, yang sangat penting bagi industri makanan. Penelitian lebih lanjut dapat difokuskan pada penerapan teknik machine learning untuk meningkatkan kinerja klasifikasi pada dataset yang lebih besar dan lebih beragam.
Copyrights © 2024