Pengolahan citra digital berperan penting dalam klasifikasi tanaman, termasuk cabai keriting. Penelitian ini mengusulkan metode pengelompokan citra cabai keriting menggunakan algoritma K-Means dengan median filtering sebagai langkah awal untuk mengurangi noise pada citra. Ekstraksi fitur dilakukan dengan model warna RGB untuk fitur warna dan metode Grey Level Co-occurrence Matrix (GLCM) untuk fitur tekstur. Dataset terdiri dari 100 citra, masing-masing 50 citra cabai merah dan hijau keriting, dengan pembagian 60 citra untuk pelatihan dan 40 citra untuk pengujian. Hasil menunjukkan bahwa penggunaan median filtering meningkatkan akurasi klasifikasi, dengan akurasi 95% untuk cabai merah keriting dan 93% untuk cabai hijau keriting, menghasilkan rata-rata akurasi 94%. Temuan ini menegaskan pentingnya median filtering dalam meningkatkan kualitas data untuk pengelompokan citra cabai keriting.
                        
                        
                        
                        
                            
                                Copyrights © 2024