Kelapa sawit adalah salah satu komoditas perkebunan yang populer di dunia dan di Indonesia, serta memiliki peran penting dalam subsektor perkebunan dalam meningkatkan perekonomian negara, akan tetapi penyakit pada tanaman kelapa sawit menghambat produksi optimal. Dengan tujuan untuk mendapatkan algoritma yang tepat untuk klasifikasi penyakit pada tanaman kelapa sawit, penelitian ini menggunakan metode Systematic Literature Review (SLR) dengan melakukan perbandingan terhadap beberapa algoritma Convolutional Neural Network (CNN), K-Nearest Neighbor (KNN), dan Support Vector Machine (SVM) untuk meninjau literatur yang ada dengan memberikan analisis komprehensif. Hasil analisis menunjukkan bahwa algoritma yang paling populer dan paling efektif dengan tingkat akurasi diatas 90% adalah Convolutional Neural Network (CNN) dibandingkan K-Nearest Neighbor (KNN) dan Support Vector Machine (SVM). Metode yang banyak digunakan untuk pengujian keakuratan hasil adalah Confusion Matrix.
Copyrights © 2024