This research introduces a dynamic optimization algorithm designed to enhance blockchain network resilience against distributed attacks such as Distributed Denial of Service (DDoS), Sybil, and eclipse attacks. The primary objective is to develop a real-time, adaptive control strategy that minimizes network performance degradation while dynamically responding to evolving threats. The research design integrates multi-objective optimization, game theory, and reinforcement learning to formulate a defense strategy that adapts to adversarial conditions. The methodology is based on a modified state-space model, where the blockchain's performance is represented by a system of dynamic equations influenced by both control actions (defensive measures) and attack vectors. The optimization problem is formulated to minimize a cost function that balances network resilience and resource usage. A numerical example is presented to validate the model, demonstrating the algorithm’s effectiveness in maintaining network performance under attack by adjusting defense mechanisms in real-time. The main results indicate that the proposed method significantly reduces the impact of distributed attacks while ensuring efficient resource allocation. In conclusion, this research offers a novel framework for enhancing blockchain security, with implications for real-world applications in decentralized systems, financial services, and critical infrastructure. Future work will address the scalability of the algorithm and explore more advanced reinforcement learning techniques to handle more complex and unpredictable attack patterns.
                        
                        
                        
                        
                            
                                Copyrights © 2024