Diamond price predictions are essential due to the high demand for these gemstones, valued as investments and jewelry. Diamonds are expensive due to their rarity and extraction process. Their prices vary depending on key factors like the diamond's inherent value and secondary factors such as marketing costs, brand names, and market trends. These variations often confuse customers, potentially leading to investment losses. This research aims to help investors determine the true price of diamonds based solely on their intrinsic value, excluding secondary factors. A machine learning approach was utilized to predict diamond prices, focusing on primary determinants. Three models such as Multi-Layer Perceptron (MLP), Decision Tree, and K-Nearest Neighbor (KNN) were compared with manual hyperparameter tuning to identify the best performing algorithm. Model performance was evaluated using Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Mean Squared Error (MSE). Among the models, KNN demonstrated the best results, achieving MAPE, MAE, and MSE values of 1.1%, 0.00038, and 〖2.687 x 10〗^(-6) respectively. This study offers valuable insights for investors by accurately predicting diamond prices based on fundamental attributes, minimizing the impact of secondary factors.
Copyrights © 2024