Cabai rawit merupakan jenis tanaman terna atau setengah merdu, memiliki tinggi sekitar 50-120 cm dengan umur bisa mencapai 3 tahun, Prospek cabai rawit cukup menjanjikan untuk memenuhi kebutuhan domestik dan ekspor Namun, produksi justru menurun. Salah satu faktor penyebab rendahnya produksi tanaman cabai adalah adanya gangguan penyakit yang menyerang. Identifikasi penyakit tanaman menjadi langkah penting dalam pemeliharaan dan perawatan, termasuk pada cabai rawit.metode yang digunakan dalam penelitian ini adalah Metode CNN (Convolutional Neural Network) dengan LeNet-5 sebagai arsitekturnya.Penelitian ini berhasil mengembangkan sistem berbasis Convolutional Neural Network (CNN) menggunakan arsitektur LeNet-5 untuk mengidentifikasi dan mengklasifikasi enam kelas penyakit pada tanaman cabai rawit di Desa Bintang, Kecamatan Sidikalang, dengan kinerja yang cukup baik ditunjukkan oleh akurasi 86%, presisi 87%, recall 86%, dan f1-score 86%.Untuk meningkatkan performa sistem, disarankan untuk melakukan eksperimen lebih lanjut dengan mengoptimalkan hyperparameter seperti learning rate dan jumlah epoch, memperluas dataset dengan variasi citra, mengeksplorasi arsitektur model yang lebih modern seperti AlexNet atau ResNet, serta menggunakan perangkat keras dengan spesifikasi yang lebih tinggi untuk efisiensi dan kecepatan pemrosesan yang lebih baik.
Copyrights © 2025