This study begins with the analysis of the growing challenge of accurately diagnosing eye diseases, which can lead to severe visual impairment if not identified early. To address this issue, we propose a solution using Deep Learning Convolutional Neural Networks (CNNs) enhanced by transfer learning techniques. The dataset utilized in this study comprises 4,217 images of eye diseases, categorized into four classes: Normal (1,074 images), Glaucoma (1,007 images), Cataract (1,038 images), and Diabetic Retinopathy (1,098 images). We implemented a CNN model using TensorFlow to effectively learn and classify these diseases. The evaluation results demonstrate a high accuracy of 95%, with precision and recall rates significantly varying across classes, particularly achieving 100% for Diabetic Retinopathy. These findings highlight the potential of CNNs to improve diagnostic accuracy in ophthalmology, facilitating timely interventions and enhancing patient outcomes. For future research, expanding the dataset to include a wider variety of ocular diseases and employing more sophisticated deep learning techniques could further enhance the model's performance. Integrating this model into clinical practice could significantly aid ophthalmologists in the early detection and management of eye diseases, ultimately improving patient care and reducing the burden of ocular disorders.
                        
                        
                        
                        
                            
                                Copyrights © 2024