This study examines the implementation of the ruin probability model in risk management in life insurance companies. The main focus of this study is to evaluate how factors such as initial surplus, premium revenue level, and claim frequency affect the ruin probability of insurance companies. Using the collective risk model approach and relevant claim distribution, this study develops two methods to calculate the ruin probability: an analytical approach and a Monte Carlo simulation. The simulation results show that increasing the initial surplus and premium level significantly reduces the ruin risk, while increasing the claim frequency increases the ruin probability. In addition, the gamma claim distribution is more suitable for modeling claims in life insurance than the exponential distribution. Model validation is carried out by comparing the prediction results with historical data of insurance companies, which shows a high level of accuracy. This study provides important insights for insurance companies in designing more effective and optimal risk management strategies.
                        
                        
                        
                        
                            
                                Copyrights © 2024