Teknika
Vol. 13 No. 3 (2024): November 2024

Comparison of Deep Neural Networks and Random Forest Algorithms for Multiclass Stunting Prediction in Toddlers

Lestari, Wulan Sri (Unknown)
Saragih, Yuni Marlina (Unknown)
Caroline (Unknown)



Article Info

Publish Date
07 Oct 2024

Abstract

Stunting in toddlers is a serious global health issue, with long-term impacts on physical growth and cognitive development. To address this problem more effectively, it is crucial not only to identify whether a child is stunted but also to predict the severity of the condition. Multiclass stunting prediction offers deeper insights into a child’s condition, enabling more precise and targeted interventions. This study aims to compare the performance of multiclass stunting prediction models using two machine learning algorithms: Deep Neural Networks and Random Forest. The research process involved data collection, preprocessing, as well as model development and testing. The results show that the Random Forest model achieved 100% accuracy in training and 99.92% accuracy in testing, while the Deep Neural Networks model achieved 93.49% accuracy in training and 93.21% in testing. Both models demonstrated strong performance in multiclass stunting prediction, with Random Forest proving superior in terms of accuracy compared to Deep Neural Networks.

Copyrights © 2024






Journal Info

Abbrev

teknika

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering Engineering

Description

Teknika is a peer-reviewed journal dedicated to disseminate research articles in Information and Communication Technology (ICT) area. Researchers, lecturers, students, or practitioners are welcomed to submit paper which has topic below: Computer Networks Computer Security Artificial Intelligence ...