The Indonesian Biomedical Journal
Vol 3, No 3 (2011)

Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway

Ferry Sandra (Laboratory of Oral Cellular and Molecular Biology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka)
Toshio Kukita (Laboratory of Oral Cellular and Molecular Biology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka)
Quan Yong Tang (Laboratory of Oral Cellular and Molecular Biology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka)
Tadahiko Iijima (Laboratory of Oral and Maxillofacial, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka)



Article Info

Publish Date
01 Dec 2011

Abstract

BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids) is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well.METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL)-tumor necrosis factor alpha (TNF-α)-macrophage colony stimulating factor (M-CSF)-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs) and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells). Tartrate resistant acid phosphatase (TRAP) staining was performed and TRAP-positive polynucleated cells (PNCs) were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System.RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1 µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis.KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α

Copyrights © 2011