Toshio Kukita
Laboratory of Oral Cellular and Molecular Biology, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Caffeic Acid Inhibited Receptor Activator of Nuclear Factor kappaB Ligand (RANKL)-Tumor Necrosis Factor (TNF) alpha-TNF Receptor Associated Factor (TRAF) 6 induced Osteoclastogenesis Pathway Ferry Sandra; Toshio Kukita; Tatsushi Muta; Tadahiko Iijima
The Indonesian Biomedical Journal Vol 5, No 3 (2013)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v5i3.68

Abstract

BACKGROUND: Caffeic acid was reported in our previous study to have potential in inhibiting osteoclastogenesis through inhibition of nuclear factor κB (NFκB). Here in our current study, we would like to investigate further the caffeic acid-affected signaling pathway leading to NFκB inhibition. Since tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) plays important role in osteoclastogenesis, we applied TRAF6- transfected RAW264 cells D-Clone (RAW-D) cells as model in this study.METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor κB ligand (RANKL)-TNFα-induced TRAF6-transfected RAW-D cells. Cells were collected, lysed and immunoblotted to detect TRAF6 expression. To detect tartrate resistant acid phosphatase (TRAP)+ polynucleated cells (PNCs), TRAP staining was performed. Meanwhile, to measure NFκB Activity, cells were transfected with pNFκB-TA-Luc and subjected to Dual Luciferase Reporter Assay System.RESULTS: Caffeic acid did not influence TRAF6 expression of RANKL-TNFα-induced TRAF6-transfected RAW-D cells. Caffeic acid diminished NFκB activity of RANKL-TNFα-induced TRAF6-transfected RAW-D cells in a concentration dependent manner. Significant NFκB activity inhibitions were seen under treatment of 1 and 10 μg/ml caffeic acid. By adding 10 μg/ml caffeic acid in RANKL-TNFα-induced TRAF6-transfected RAW-D cells, TRAP+ PNCs number was significantly suppressed.CONCLUSION: Caffeic acid inhibited RANKL-TNFα-TRAF6-induced osteoclastogenesis pathway. Since caffeic acid did not influence TRAF6 expression, TRAF6-RANK interactions and/or TRAF6 downstream signaling pathway should be further pursued to disclose inhibition mechanism of caffeic acid.KEYWORDS: caffeic acid, osteoclastogenesis, TRAF6, RANKL, TNFα, NFκB, RAW-D
Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway Ferry Sandra; Toshio Kukita; Quan Yong Tang; Tadahiko Iijima
The Indonesian Biomedical Journal Vol 3, No 3 (2011)
Publisher : The Prodia Education and Research Institute (PERI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18585/inabj.v3i3.153

Abstract

BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids) is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well.METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL)-tumor necrosis factor alpha (TNF-α)-macrophage colony stimulating factor (M-CSF)-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs) and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells). Tartrate resistant acid phosphatase (TRAP) staining was performed and TRAP-positive polynucleated cells (PNCs) were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System.RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1 µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis.KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α