This research evaluates the efficiency of the Newton polynomial interpolation method in predicting stock price trends from historical data. The study was conducted using Microsoft stock price data according to Nasdaq for the period 4 November to 29 November 2024. This method creates an example of a polynomial based on divided disparities to describe patterns stock price convoy. The calculation results show that Newton interpolation is able to form stock price predictions with good accuracy, for example the stock price prediction in the 20 off index is $417.05, which is close to the historical data trend. The graph obtained also illustrates the mathematical interaction between the free index and stock prices visually. However, the accuracy of predictions is largely determined by the amount and quality of data used. Therefore, Newton's interpolation can be used as a a simple and efficient analytical tool, especially when applied in conjunction with other methods to deal with the complexity of the stock market.
Copyrights © 2024