Penelitian ini bertujuan untuk menganalisis pola penggunaan transportasi publik berbasis layanan Uber di New York City menggunakan algoritma K-Means Clustering. Dataset yang digunakan mencakup data pickup yang mencatat lokasi (latitude dan longitude) serta waktu. Proses analisis dilakukan menggunakan RapidMiner dengan langkah-langkah meliputi praproses data, normalisasi, pengelompokan klaster, dan evaluasi model. Hasil menunjukkan bahwa algoritma K-Means mampu mengidentifikasi lima wilayah pickup utama dengan nilai Silhouette Coefficient sebesar 0,65, menunjukkan klaster yang cukup terpisah.
Copyrights © 2025