Techno.Com: Jurnal Teknologi Informasi
Vol. 23 No. 4 (2024): November 2024

Klasifikasi Emosional Ulasan Pelanggan dengan Pendekatan NLP menggunakan Metode Ensemble dan ROS

Noorizki, Adisaputra Zidha (Unknown)
Pratikno, Heri (Unknown)
Kusumawati, Weny Indah (Unknown)



Article Info

Publish Date
27 Nov 2024

Abstract

Konsep Orientasi Pelanggan sangat penting bagi perusahaan untuk berkembang di era saat ini, dengan memanfaatkan teknologi untuk mendapatkan wawasan yang mendalam tentang perilaku pelanggan mereka. Salah satu alat teknologi tersebut adalah pembelajaran mesin, khususnya yang menggunakan pendekatan pemrosesan bahasa alami (NLP). Penelitian ini menggunakan lima algoritma yang berbeda dan menggabungkan berbagai metode untuk meningkatkan kinerja model machine learning. Melalui penerapan teknik-teknik seperti random over-sampling (ROS) dan ensemble learning, akurasi prediksi keseluruhan untuk kelas minoritas meningkat secara signifikan. Model ensemble yang diintegrasikan dengan ROS mencapai akurasi 0,90 dan mean square error 0,91, mengungguli algoritma lain yang diuji dalam penelitian ini. Pendekatan yang dioptimalkan ini tidak hanya menunjukkan keefektifan pemanfaatan teknologi untuk sebuah perusahaan dapat menerapkan strategi yang berpusat pada pelanggan, tetapi juga menyoroti pentingnya peningkatan metodologi dalam pemodelan prediktif untuk keberlanjutan bisnis.   Kata kunci: Klasifikasi Emosi, Pembelajaran Mesin, Pemrosesan Bahasa Alami, Hard Voting, Random Over Sampling.

Copyrights © 2024






Journal Info

Abbrev

technoc

Publisher

Subject

Computer Science & IT Engineering

Description

Topik dari jurnal Techno.Com adalah sebagai berikut (namun tidak terbatas pada topik berikut) : Digital Signal Processing, Human Computer Interaction, IT Governance, Networking Technology, Optical Communication Technology, New Media Technology, Information Search Engine, Multimedia, Computer Vision, ...