IAES International Journal of Artificial Intelligence (IJ-AI)
Vol 13, No 4: December 2024

Grindulu fault cloud radon data for earthquake magnitude prediction using machine learning

Pratama, Thomas Oka (Unknown)
Sunarno, Sunarno (Unknown)
Wijatna, Agus Budhie (Unknown)
Haryono, Eko (Unknown)



Article Info

Publish Date
01 Dec 2024

Abstract

The study investigates the potential of integrating radon gas concentration telemonitoring systems with machine learning techniques to enhance earthquake magnitude prediction. Conducted in Pacitan, East Java, Indonesia, where the stations are near the active Grindulu fault, the research employs random forest (RF), extreme gradient boosting (XGB), neural network (NN), AdaBoost (AB), and support vector machine (SVM) methods. The study aims to refine earthquake magnitude prediction, utilizing real-time radon gas concentration measurements, crucial for disaster preparedness. The evaluation involves multiple metrics like mean absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), mean squared error (MSE), symmetric mean absolute percentage error (SMAPE), and conformal normalized mean absolute percentage error (cnSMAPE). XGB and SVM emerge as top performers, showcasing superior predictive accuracy with minimal errors across various metrics. XGB achieved MAE (0.33), MAPE (6.03%), RMSE (0.51), MSE (0.26), SMAPE (0.06), and cnMAPE (0.97), while SVM recorded MAE (0.34), MAPE (6.20%), RMSE (0.51), MSE (0.26), SMAPE (0.06), and cnSMAPE (0.97). The analysis reveals XGB as the most effective method, boasting the lowest error values. The study underscores the importance of expanding data availability to enhance predictive models, ultimately contributing to more precise earthquake magnitude predictions and effective mitigation strategies.

Copyrights © 2024






Journal Info

Abbrev

IJAI

Publisher

Subject

Computer Science & IT Engineering

Description

IAES International Journal of Artificial Intelligence (IJ-AI) publishes articles in the field of artificial intelligence (AI). The scope covers all artificial intelligence area and its application in the following topics: neural networks; fuzzy logic; simulated biological evolution algorithms (like ...