International Journal of Reconfigurable and Embedded Systems (IJRES)
Vol 14, No 1: March 2025

Finite element analysis method as an alternative for furniture prototyping process and product testing

Kristianto, Fesa Putra (Unknown)
Amarta, Zain (Unknown)
Hutasoit, Nicolas (Unknown)
Fariz, Nuthqy (Unknown)
Herinda, Fania Putri (Unknown)



Article Info

Publish Date
01 Mar 2025

Abstract

In the current furniture industry, making furniture goes through many steps. There are ordering materials, designing, building a prototype, and testing samples. This process is considered quite complex, requiring significant costs, and lengthy production time. The application of finite element analysis (FEA) can be a solution to simulate the furniture manufacturing process. Objective of this research was to determine FEA could substitute making and test prototype furniture thereby saving costs and time. This method utilizes ANSYS 18.1 software for more accurate and rapid calculations, incorporating load variables of 400 N, 600 N, 800 N, and 1,000 N, along with gravitational acceleration of 10 \frac{m}{s^2}. The research evaluates the difference (expressed as a percentage) between the results obtained from simulations and those obtained directly from experiments, considering maximum equivalent stress, maximum principal stress, and total deformation values. The final step involves comparing the simulation with direct testing in terms of cost and time. The research results show an average error factor of 5% across all aspect. In terms of cost, the method can save 1,807 USD and reduce production time by up to one month. From these findings, it can be concluded that the process of prototyping and sample testing can be replaced using the finite element method.

Copyrights © 2025






Journal Info

Abbrev

IJRES

Publisher

Subject

Economics, Econometrics & Finance

Description

The centre of gravity of the computer industry is now moving from personal computing into embedded computing with the advent of VLSI system level integration and reconfigurable core in system-on-chip (SoC). Reconfigurable and Embedded systems are increasingly becoming a key technological component ...