JURNAL TEKNIK INFORMATIKA DAN SISTEM INFORMASI
Vol 11 No 4 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)

Penerapan Algoritma Naive Bayes Untuk Prediksi Penyakit Paru-Paru Pada Sumber Kaggle Menggunakan Aplikasi Rapid Miner

Saputra, Suwanda Aditya (Unknown)



Article Info

Publish Date
18 Dec 2024

Abstract

The development of information technology is very rapid and has been used in many fields, one of which is the health sector. The development of information technology has a very significant role in treating diseases, one of which is lung disease. In this research, the researcher took the data source from Kaggle. The dataset used can be accessed via the link https://www.kaggle.com/datasets/andot03bsrc/dataset-predic-terkena-penyakit-paruparu and data processing uses the Naive Bayes method with the Rapid Miner supporting application. The amount of training data is 80% and the amount of test data is 20% of the prediction results for each class of accuracy, recall and precision in each target class. Performance Vector also informs the number of true positive values, 2499 data, true negative 403 data, false positive 371 data, false negative 2727 data. In the Vector performance we can see that the resulting accuracy is 87.10%, the resulting Class Recall is 87.09% and the resulting class precision is 87.06. The accuracy prediction results 87.10% show good performance in predicting a number of positive cases of lung disease.

Copyrights © 2024






Journal Info

Abbrev

jatisi

Publisher

Subject

Computer Science & IT

Description

JATISI bekerja sama dengan IndoCEISS dalam pengelolaannya. IndoCEISS merupakan wadah bagi para ilmuwan, praktisi, pendidik, dan penggemar dalam bidang komputer, elektronika, dan instrumentasi yang menaruh minat untuk memajukan bidang tersebut di Indonesia. JATISI diterbitkan 2 kali dalam setahun ...