The emerging trend known as "ubiquitous computation" aims to incorporate intelligent gadgets into commonplace items. The lightweight cryptographic techniques are being researched and developed to minimize the gadgets' resources and a perpetual desire to reduce production expenses. A key element of symmetric cryptography, the stream cipher has unique benefits in terms of scalability as well as performance. The Mickey-128 stream cipher is designed and implemented in this manuscript. Additionally, unrolling features are incorporated with Mickey-128 cipher to enhance the throughput. The Mickey-128 contains a 128-bit key, an initialization vector (IV), and two clocking registers (R and S) with mapping units. The finite state machine (FSM) controller initializes and controls the key, IV and RS- registers data. The proposed Mickey-128 cipher runs on an Artix-7 field programmable gate array (FPGA) at 639.1 MHz and uses less than 1% of the chip's area (Slices). For unrolling factors 8 and 16, the Mickey-128 cipher achieves a throughput of 5.12 Gbps and 10.23 Gbps, accordingly. Finally, a comparison is made between the proposed Mickey-128 cipher and the existing ciphers' better hardware efficiency and throughput.
Copyrights © 2025